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Interpretation of an Exactly Solvable 
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The interpretation of the exact calculation of the partition function and correla- 
tions of a two-component plasma obtained earlier is considered. The system has 
species of charge ratio 1 : 2 which are constrained to lie on a circle and interact 
via the two-dimensional Coulomb potential. By studying the exact results we 
gain an understanding of why the excess thermodynamic quantities of the two 
component system can be well approximated by the sum of the appropriate 
excess thermodynamic quantities of the one-component systems. 

KEY WORDS: Exactly solvable; two-component plasma; mixing; degener- 
ate states. 

1. INTRODUCTION 

In a paper hereafter referred to as I (~) the partition function and two- 
particle correlation functions of a two-component classical Coulomb sys- 
tem (plasma) were evaluated at a special value of the coupling constant. 
The system consists of particles of charges + q and + 2q constrained to lie 
on a circle and interact via the two-dimensional Coulomb potential. Charge 
neutrality is obtained by the presence of a uniform background charge 
density. The analogous system interacting in a three-dimensional domain 
via the three-dimensional Coulomb potential is a model of a H + - H e  2+ 
mixture immersed in a neutralizing background of degenerate electrons. 
This model is directly relevant to the description of fully ionized matter 
characteristic of white dwarf stars or the interior of Jupiter. (2'3) 
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In I we restricted our attention to the technical details of the derivation 
and verification of the sum rules satisfied by the correlation functions, 
which are of general applicability to Coulomb systems. Here we use the 
expressions obtained in I for the partition function to evaluate the free 
energy per particle in the thermodynamic limit. This allows us to calculate 
the excess free energy of mixing, which is a quantity of considerable 
importance when discussing astrophysical phenomena such as demixing of 
the two-component system into separate one-component phases. (3'4) We 
thus provide an exact result on which the accuracy of approximate methods 
of calculating this quantity can be tested. In particular we can test the 
linear interpolation method, which is known to be remarkably accurate, in 
which the free energy of the two-component system is equated to the sum 

o f  the free energies of the two separate one-component systems. 
Further information about the system is obtained by examining the 

large separation asymptotic expansions of the truncated two-particle corre- 
lations and also by plotting these functions to reveal their short-distance 
behavior. This gives us some insight into the behavior of two-component 
plasmas in general, and allows an explanation of the accuracy of the linear 
interpolation method as an approximation to the free energy. 

2. THE EXCESS FREE ENERGY 

In I we considered a system of aN particles of charge + q and bN 
particles of charge +2q, labeled 0 1 , 0 2 , . . .  , OaN and OaN+l,OaN+2 , 
. . . .  O(a+b)U, respectively, interacting on the circle of radius R via the 

two-dimensional Coulomb potential 

V(Oj,01,)= --q~log(R)]ei~176 I (2.1) 

Here L is an arbitrary length scale which we take equal to 1. In the 
presence of a neutralizing background charge density 

(a + 2b)N 
q 2~rR -~ qQ (2.2) 

the Hamiltonian for such a system, which consists of terms corresponding 
to the particle-particle, particle-background, and background-background 
interactions (the last two terms yielding only constants) is given by 

H = q=N(2b + a/2)logR - q2 2 logle i~ ei~ (2.3) 
1 < j < k < ( a + b ) N  

In (2.3) qj= 1 for 1 < j <  aN a n d q j = 2 f o r a N +  1 <~j<(a+b)N.  
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Introducing the dimensionless coupling constant 

F -= q2/kT = q2fl (2.4) 

it follows immediately from (2.3) that in the finite system the excess free 
energy per particle, to be denoted ~(ex), is given by 

fiff(~)(F, Q, aN, bN) = - a21_- ~ log2~Q +f(r, aU, bU) (2.5) 

where the function f is defined as 

and 

(2b + a / 2 ) F  ] 
f(F, aN, bN) = 1 log(a + 2b)N - log2~r 

a + b  

1 logI(F, aN, bN) 
+ (a + b)N 

(2.6) 

(a + b)N 

I(r, aN, bN) = 1[ fo2#dOl II [e iOj- eiOklrq:qk (2.7) 
1= 1 1 < j < k < ( a + b ) N  

By a generalization of an integration procedure due to Dyson and 
Mehta  (5) we proved 

I(1,aN, bN) = 
(aN)! (bN )![ N(b + a / 2 ) ] !  

[ N(2b + a) ]! 

l=1 

( 1 6 ~ )  aN/2+bN 

(2.8) 

then 

(b + a/2)N and a 2 -  (b + a/2)N [ artanu 1 
v 2 ~ v l + v  2 ) 

where the sum is over all combinations of { 1, 2 . . . .  , N(b + a/2)}  taken 
bN at a time. Furthermore, by using a local limit theorem we showed 

~ IIbN [[ c ( l ) -  -~l J ] 2  [F(ia + N(b + a/2) + 1/2)[2cosh~ra (2.9) 
l= 1 qra N a ( 2 ~ a 2 )  t /2  

[the F in (2.9) denotes the 7 function], where if v is the unique positive 
solution of the equation 

____q_a _ artan v (2.10) 
a + 2b t, 
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Using Stirling's formula for the ~, function in (2.9) we can obtain the 
thermodynamic limit of the free energy. However, we first note both ~(ex) 
and f, which depended on both aN and bN in the finite system, are now 
dependent on the concentrations 

xl _ a b (2.11) a + b  ' x 2 -  a + b  

x I denoting the concentration of the + q charges and x 2 the concentration 
of +2q charges. Since x I + x 2 = 1, in the thermodynamic limit we can 
write ~(ox) and f as ff(~x)(F, Q, x0  and f(F, xl). With this notation, we have 
in the thermodynamic limit 

f(r = 1,Xl)= x--L1 ' 2x12(v2 + 1) 
2 log ~r(xl + 2x2) 2 

x2(1 + 1/~' 2) x 1 
+ x21og 2x 2 

x I + 2 x  2 2 

(2.12) 

3. THE EXCESS FREE ENERGY OF MIXING 

In a finite system the excess free energy of mixing 2xF is defined as (3) 

AF (ex) = F(eX)(F, Q', aN, bN ) - F(ex)(r, Q', aN, 0) - F(~x)(F, Q', O, bN ) 

(3.1) 

This quantity is introduced as an indicator of the demixing of the two 
charge species. Thus the background charge density Q', being a fixed 
quantity, must keep the same value in the two separate one-component 
phases as that in the two-component phase, as indicated in (3.1). Denoting 
the excess free energy of mixing per particle by/X~ (ex), we have from (3.1) 

flA~ (~x) = fl[~(e~)(F, Q' ,x  0 - Xl~(ex)(r, Q', x I = 1) 

-xz f (e~) (F ,  O', X 1 = 0) 1 (3.2) 

Hence from (2.5) and (2.12) we have at F = 1 

[Xl x 2 ( l + v 2 )  2 x 2 ( l + l / v 2 )  ] (3.3) 
BA~ (ex) = - --f log (2 - Xl) 2 + x21~ 1 + x 2 
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Table I. 

x I v f(l, Xl) ~A(~ (ex) P 

0.2 13.47025 - 2.35813 0.00862 .37% 

0.3 8.21473 - 2.11494 0.01200 .57% 

0.4 5.57299 - 1.92080 0.01460 .76% 

0.5 3.97258 - 1.72572 0.01625 .94% 

0.6 2.88719 - 1.52947 0.01674 1.09% 

0.7 2.08754 - 1.33181 0.01581 1.19% 

0.8 1.45110 - 1.13234 0.01308 1.15% 

In Table I we give values of v, f(1,Xl), Ar (ex), P ~ IflAqs(ex)/f(1,Xl)l x 
100%, for various values of the concentration x I . 

4. THE CORRELATION FUNCTIONS 

If we denote the five integrals 

I, = foldt sin ~ryQt cos ~ryQt 
t ( t  2 + l / v 2 )  ' 12= fooldttl + 1/v  2 

fo t sin ~ryQt 13 = l dt t2 + 1/  v 2 ' 
t2COS 

14 = r'lldt 
~ryQt 

do t 2 + 1/p 2 

t3sin qryQt 
15 = rlldt 

Jo t 2 + 1/V 2 

then the double integral representations given in I for the correlation 
functions can be written in terms of these functions. We thus have for the 
truncated two-particle correlations 

T _ Q 2  
O+,,+,(y) = u4 ( 1'13 + 12) + ~-E--13 (4.1a) 

2v 2 

_ Q 2  

1 0 5 1 , + 2 ( y )  = 2 p  2 ( I 2 1 4  -1" 1 2 )  (4.1b) 

r _ Q2 
p+2,+2(y) = 4 (1315 + I2) (4.1c) 

where y denotes the particle separation. 



82 Forrester 

T 2 P1,1 ]Q 
t 2  

i //k,, ~ . ~  
4 6 YQ 

•/o 2 2~: 

' i t 
yQ " - -  

I .... ~ "'Y Q 

C 

Fig. 1. The scale on the vertical axis has been multiplied by !,000. 
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We use these representations to obtain the large y asymptotic expan- 
sions to order 1/y 4, valid for nonzero concentrations x~ and x 2" 

Q2 1 

(1 "{- P2) 2 (rryQ)2 
cos  yO 
(rryQ) 4 

[-1+ - -  
(rryQ)4 1 "1- 12 2 

4v 2 12v 4 ]} 
(1 + /"2) 2 

_ Q 2v2 { 1 cos2~ryQ 
O+TI'+2(Y) 2(I + v2) 2 (qrYb) 2 (qryQ) 4 

+ m 'E 
(rryQ) 4 

(4.2a) 

Q 2b'4 T 1 
9 + 2 , + 2 ( Y ) ~  

4(1 + v2) 2 (rryQ) 2 

"1"1 
1 + 8/'2 12v4 / [  

1 + v 2 (1 "}- b'2) 2 JJ 
(4.2b) 

cos2 yQ 
(vryQ) 4 

+_____k__l [ _ 1 +  12V2 12V 4 ]} 
(vryQ) 4 1 + v2 (1 + v2) 2 

(4.2c) 

In Figs. la, lb, and lc we give plots of  p T I , + I / Q 2 ,  P+I.+z/QT 2, and 
T 2 O + 2, + 2 /Q , respectively, as functions of yQ for the concentration x I = 0.5. 

5. D I S C U S S I O N  

We demonstrated in I that the truncated charge-charge correlation, 
defined as 

C[(y) = oY+l,+,(y) + 40+r,,+2(y) + 40+rZ.+2(y) (5.1) 

satisfies Jancovici's sum rule (6'7) 

C[(y) kT rr~y 2 as y-+ oo (5.2) 
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pT i -~, Although Cf(y)  is a linear sum of the (2)tY) and thus the asymptotic 
form (5.2) does not imply the decay of the truncated two-particle correla- 
tions will also be of order l / S ,  we see from (4.2) that in fact the p(~) do 
decay as O(1/y2). Indeed it is reasonable to conjecture from (5.2) that the 
decay of the p(~) will always be at least as slow as O(1/y2), so from 
Jancovici's physical argument, (6) the origin of this term can be regarded as 
being well understood. 

We note the asymptotic expansions (4.2) all contain an oscillatory term 
of period 1/Q at order l / y  4. Such a term was first noted by Dyson (s) in 
the asymptotic expansion of the truncated two-particle correlation of the 
same system as considered here but with x 2 -- 0. He found an oscillatory 
term of period l/p, O being the particle density. The appearance of the 
oscillatory term was interpreted as being indicative of an incipient crystal- 
line structure of period l /o ,  and indeed it can easily be proved that this is 
the ground state of the one-component system. Thus if Dyson's interpreta- 
tion is to be consistent with our results, we must interpret the oscillatory 
term seen here as being indicative of an incipient crystalline structure of 
period 1 / Q. 

To gain some insight into why this is so, consider the short-distance 
behavior of the correlations as revealed by Fig. 1. Take special note of the 
maximum probability peaks at approximately a distance 1 /Q  in the r P+l,+l  
plot, 3/2Q in the r P+l,+2 plot and 2/Q in the r P + 2,+ 2 plot, the exact 
location of the peaks being distances 6%, 3%, and 2% greater, respectively. 
Writing r~ for the spacing between a particle of charge aq and a particle of 
charge 8q, we thus have as a good approximation at F --- 1, 

rl l ,  rl2, r2 2 = Q -1, 3Q-1/2,  2Q -i  (5.3) 

respectively, and would expect (5.3) to remain a good approximation in the 
ground state. More importantly though, the short-range behavior of the 
correlations indicate there is little or no preferred sequential ordering of 
the + q and + 2q charges. The two species of charges have thus mixed. 

The reason for the appearance of an oscillatory term can now be 
understood as a consequence of the mixing. At large distances a fixed test 
charge cannot distinguish a + 2q charge from two + q charges at positions 
1/2Q either side of the position of the +2q charge. The test charge thus 
"sees" the incipient crystalline structure of the corresponding one- 
component system which has lattice spacing 1/Q.  

It is interesting to note that the one-dimensional system with the linear 
potential satisfies (5.3) exactly in the ground state, with each different 
sequential ordering having the same ground state energy. Consider the 
interval [ - L ,  L] of the real line. If we take as the pair potential 

~(x, , xj) = - qjlx, - xjl (5.4) 
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and consider aN particles of charge + q labeled x l, x 2 . . . .  , XaN and bN 
particles of charge + 2q labeled X,N + ] . . . . .  X(a+b)N immersed in a neutral- 
izing background of charge density 

qQ = q(aN + 2bN) /2L  (5.5) 

it is easy to show the Hamiltonian for the system, disregarding constant 
terms, can be written 

( ( ak~=lqQ Wk / 2 + 2  ~ qQXk-- '5"-  ~ (5.6) H = = Xk -- 2Q ] k=aN+l 

where 

= q , -  Z qr (5.7) 
l r 

In (5.7) the first sum is over all charges to the left of qk and the second sum 
is over all charges to the right of qk. This formula holds for any given 
sequential ordering. Thus the ground state occurs a t y  k = wk/2Q, and since 
W k + l = W k + q k  + q k + I ,  we have xk+ l = x  k+(qk  +q~+O/2Q, so the 
ground state spacing is given by (5.3). 

Of course the linear potential is unique among the Coulomb potentials, 
for a one-dimensional charge + aq at the center of a strip of uniform 
neutralizing background of length a / Q  produces a strictly vanishing poten- 
tial outside the strip. This is not the case with the logarithmic potential, for 
which the analogous neutral cell has a qaudrupole moment. This means we 
have no prior reason to suppose different sequential orderings of the + 2q 
and + q charges interacting via the logarithmic potential will have exactly 
the same ground state energy, nor would we expect (5.3) to exactly 
represent the ground state spacings. 

However, we have seen at F = 1, in the thermodynamic limit, (5.3) is a 
good approximation to the most probable charge spacing. By considering 
the magnitude of the excess free energy of mixing we can also use our exact 
result to test whether the majority of different sequential orderings have 
nearly the same energies at I" = 1. This will be done below, where we 
conclude that this is in fact the case. We thus have the features of the 
ground state of the linear potential Coulomb system with a uniform 
background persisting as a good approximation in the logarithmic case. 

Indeed, supposing the features of the ground state of the linear 
potential system are those of the logarithmic potential to a good approxi- 
mation, we have the states of the system at F = 1 dominated by the 
stationary points of the potential. 

Now consider the excess free energy of mixing. From Table I we see at 
I" = l that /3A~ <ex) is positive. We know from plots of the correlation 
functions that the two-component plasma does mix, but in view of/3Aft ~eX) 
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being positive we might enquire into the thermodynamic reasons for this. 
The free energy of mixing per particle is the sum total of A0 (~) and ~0 (id) 
where A~ (id) is the entropy of mixing per particle of the ideal gas. We note, 
in view of the comment after (3.1), the relative volume occupied by charge 
species is determined by the charge density, which must be the same in all 
systems. Thus the + q charges must occupy a portion Xl/(X 1 + 2x2) of the 
volume and the +2q  charges a portion 2x2/(x 1 + 2x2), so A~(ia) is given 
by 

( ( a + b ) N ) [  
Ac~(id) = o(id)  p __ 2~rR _ ~(id) p ---~ 

[ t l (5.8) 

Here the first term on the right of (5.8) denotes the free energy of a 
two-component ideal gas of aN particles of species 1 and bN particles of 
species 2, the other terms on the right denoting the free energy of the 
one-component ideal gas. Evaluating the right-hand side of (5.8) we have 

/~A, (idl = -- [log(2 -- xl) -- (1 -- xllog2)l  + XllOgx 1 + xzlogx 2 (5.9) 

Computation of (5.9) shows/~A0(ia) to be negative and some 30 times the 
magnitude of/3A0 (e• Thus the total free energy of mixing per particle is 
negative, so the system does mix. 

As commented above, the conjecture of the majority of different 
sequential orderings having approximately the same energy has conse- 
quence with regard to the excess free energy of mixing. Suppose the 
conjecture to be true. Then we conclude the entropy gained by re-ordering 
can be well approximated by the entropy of  mixing of the ideal gas. 
Subtracting out this portion we need only consider the free energy of any 
one of the ordered states. In particular we can consider the state in which 
the + q and +2q  charges are separate, occupying a portion xl / (2x  2 + xl) 
and 2Xz/(2x 2 + xl) of the volume, respectively. Thus we would expect 

q~(F, Q',xl) ~ - -  A ~  (id) -4- ~ ( r ,  Q ' ,  x 1 ~-- 1) -t-- q~(I', Q ' ,  x 1 ~-- 0 )  (5.10) 

But A0 (ia) is given by (5.8) so we can write (5.10) as 

Q',xl) ~- r Q', X 1 = 1) "4- ~ (ex) (F ,  Q', X 1 ~--- 0 )  (5.11) 

Recalling the definition (3.2) this is equivalent to saying 

/~zXO (~x) ~ 0 (5.12) 

and indeed from Table I we see at F -- 1 that 0 < /?Aq, (~) < 0.017, which is 
in qualitative agreement with (5.12). 
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Equation (5.12) is well known from approximate studies of two- 
component  systems with a rigid neutralizing background in the case of the 
three-dimensional Coulomb potential within a three-dimensional domain. (3~ 
By the converse of the argument leading to (5.12) we would expect this to 
be an indication that all states of the system are almost identical up to 
re-ordering. Explicitly, if the charge ratio was c~:8, by analogy with the 
exactly solved model, we would expect as a good approximation the 
average volume occupied by the charges to be in the ratio c~:6, with 
different states merely being different sequential orderings, each having 
nearly the same energy. 
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